
1

A Survey of Machine Learning Applied to
Computer Architecture Design

Drew D. Penney, and Lizhong Chen∗, Senior Member, IEEE

Abstract—Machine learning has enabled significant benefits in diverse fields, but, with a few exceptions, has had limited impact on
computer architecture. Recent work, however, has explored broader applicability for design, optimization, and simulation. Notably,
machine learning based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This paper
reviews machine learning applied system-wide to simulation and run-time optimization, and in many individual components, including
memory systems, branch predictors, networks-on-chip, and GPUs. The paper further analyzes current practice to highlight useful
design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing
work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly
automated architectural design.

F

1 INTRODUCTION

In the past decade, machine learning (ML) has rapidly
become a revolutionary factor in many fields, ranging from
commercial applications, as in self-driving cars, to medical
applications, improving disease screening and diagnosis. In
each of these applications, an ML model is trained to make
predictions or decisions without explicit programming by
discovering embedded patterns or relationships in the data.
Notably, ML models can perform well in tasks/applications
where relationships are too complex to model using analyt-
ical methods. These powerful learning capabilities continue
to enable rapid developments in diverse fields. Concur-
rently, the exponential growth predicted by Moore’s law has
slowed, putting increasing burden on architects to supplant
Moore’s law with architectural advances. These opposing
trends suggest opportunities for a paradigm shift in which
computer architecture enables ML and, simultaneously, ML
improves computer architecture, closing a positive-feedback
loop with vast potential for both fields.

Traditionally, the relationship between computer archi-
tecture and ML has been relatively imbalanced, focusing
on architectural optimizations to accelerate ML algorithms.
In fact, the recent resurgence in AI research is, at least
partly, attributed to improved processing capabilities. These
improvements are enhanced by hardware optimizations
exploiting available parallelism, data reuse, sparsity, etc. in
existing ML algorithms. In contrast, there has been relatively
limited work applying ML to improve architectural design,
with branch prediction being one of a few mainstream
examples. This nascent work, although limited, presents an
auspicious approach for architectural design.

This paper presents an overview of ML applied to archi-
tectural design and analysis. As illustrated in Figure 1, this
field has grown significantly in both success and popularity,
particularly in the past few years. These works establish
the broad applicability and future potential of ML-enabled
architectural design; existing ML-based approaches, ranging
from DVFS with simple classification trees to design space
exploration via deep reinforcement learning, have already
surpassed their respective state-of-the-art human expert and
heuristic based designs. ML-based design will likely con-

∗Corresponding author. Email: chenliz@oregonstate.edu
The authors are with Oregon State University, Corvallis, OR 97331
Copyright 2019 by Drew D. Penney and Lizhong Chen
All Rights Reserved

Fig. 1. Publications on machine learning applied to architecture (for
works examined in Section 3)

tinue to provide breakthroughs as promising applications
are explored.

The paper is organized as follows. Section 2 provides
background on ML and existing models to build intuition on
ML applicability to architectural issues. Section 3 presents
existing work on ML applied to architecture. Section 4
then compares and contrasts implementation strategies in
existing work to highlight significant design considerations.
Section 5 identifies possible improvements and extensions
to existing work as well as promising, new applications for
future work. Finally, Section 6 concludes.

2 BACKGROUND
2.1 Fundamental Applicability
Machine learning has been rapidly adopted in many fields
as an alternative approach for a diverse range of prob-
lems. This fundamental applicability stems from the pow-
erful relationship learning capabilities of ML algorithms.
Specifically, ML models leverage a generic framework in
which these models learn from examples, rather than ex-
plicit programming, enabling application in many tasks,
including those too difficult to representing using standard
programming methods. Furthermore, using this generic
framework, there may be many possible approaches for
any given problem. For example, in the case of predicting
IPC for a processor, one can experiment with a simple
linear regression model, which learns a linear relationship
between features (such as core frequency and cache size)

ar
X

iv
:1

90
9.

12
37

3v
1 

 [
cs

.A
R

] 
 2

6 
Se

p 
20

19



2

and the instructions-per-cycle (IPC). This approach may
work well or it may work poorly. In the case it works
poorly, one can try different features, non-linear feature
combinations (such as core frequency times cache size),
or a different model entirely, with another common choice
being an artificial neural network (ANN). This diversity in
possible approaches enables adjustment of models, model
parameters, and training features to match the task at hand.

2.2 Learning Approaches & Models
The learning approach and the model are both fundamental
considerations in applying machine learning to any prob-
lem. In general, there are four main categories of learn-
ing approaches: supervised learning, unsupervised learn-
ing, semi-supervised learning, and reinforcement learning.
These approaches can be differentiated by what data is used
and how that data is used to facilitate learning. Similarly,
many appropriate models may exist for a given problem,
thus enabling significant diversity in application based
on the learning approach, hardware resources, available
data, etc. In the following, we introduce these learning
approaches and several significant models for each learning
approach, focusing on approaches with proven applicability.
Implementation details are considered later in Section 4.

Supervised learning: In supervised learning, the model
is trained using input features and output targets, with the
result being a model that can predict the output for new,
unseen inputs. Common supervised learning applications
include regression (predicting a value such as processor
IPC) and classification (predicting a label such as the op-
timal core configuration for application execution). Feature
selection, discussed in Section 2.3, is particularly important
in these applications as the model must learn to predict
solely based on feature values.

Supervised learning models can be generalized into
four categories: decision trees, Bayesian networks, support
vector machines (SVMs), and artificial neural networks [1].
Decision trees use a tree structure where each node repre-
sents a feature and branches represent a value (or range of
values) for that feature. Inputs are therefore classified by
sequentially following branches based on the value of the
feature being considered at a given node. Bayesian networks
instead embed conditional relationships into a graphical
structure; nodes represent random variables and edges rep-
resent conditional dependence between these variables. A
performance prediction model, for example, can condition
prediction for new applications on learned distributions
for unobserved variables (i.e., underlying factors affecting
performance) from other applications, as in [2]. SVMs are
generally known for their function rather than a particular
graphical structure (as in decision tree and Bayesian net-
works). Specifically, SVMs learn the best dividing line (in
2-D) or hyperplane (in high dimensions) between examples,
then uses examples along this hyperplane to make new pre-
dictions. SVMs can also be extended to non-linear problems
using kernel methods [3] as well as multi-class problems.
Finally, artificial neural networks (or simply neural net-
works) represent a broad category of models that are, again,
defined by their structure, which is reminiscent of neurons
in the human brain; layers of nodes/neurons are connected
using links with learned weights, enabling particular nodes
to respond to specific input features. Simple perceptron
models contain just one weight layer, directly converting
the weighted sum of inputs into an output. More complex
DNNs include several (or many) layers of these weighted

sums. Additional variants such as convolutional neural net-
works (CNNs) incorporate convolution operations between
some layers to capture spatial locality while recurrent neural
networks re-use the previous output to learn sequences and
long-term patterns. All these supervised learning models
can be used in both classification and regression tasks,
although there are some distinct high-level differences. Vari-
ants of SVMs and neural networks tend to perform better
for high-dimension and continuous features and also when
features may be nonlinear [1]. These models, however, tend
to require more data compared to Bayesian networks and
decision trees.

Unsupervised learning: Unsupervised learning uses just
input data to extract information without human effort.
These models can therefore be useful, for example, in reduc-
ing data dimensionality by finding appropriate alternative
representations or clustering data into classes that may not
be obvious for humans.

Thus far, the primary two unsupervised learning models
applied to architecture are principal components analysis
(PCA) and k-means clustering. PCA provides a method
to extract significant information from a dataset by deter-
mining linear feature combinations with high variance [4].
As such, PCA can be applied as an initial step towards
building a model with reduced dimensionality, a highly
desirable feature in most applications, albeit at the cost of
interpretability (discussed in Section 4). K-means clustering
is instead used to identify groups of data with similar fea-
tures. These groups may be further processed to generalize
behavior or simplify representations for large datasets.

Semi-supervised learning: Semi-supervised learning
represents a mix of supervised and unsupervised methods,
with some paired input/output data, and some unpaired in-
put data. Using this approach, learning can take advantage
of limited labeled data and potentially significant unlabeled
data. We note that this approach has, thus far, not yet
found application in architecture. Nevertheless, one work
on circuits analysis [5] presents a possible strategy that
could be adapted in future work.

Reinforcement Learning: In reinforcement learning, an
agent is sequentially provided with input based on an
environment state and learns to perform actions that op-
timize a reward. For example, in the context of memory
controllers, the agent replaces traditional control logic. Input
could include pending reads and writes while actions could
include standard memory controller commands (row read,
write, pre-charge, etc.). Throughput could then be optimized
by including it in the reward function. Given this setup,
the agent will potentially, over time, learn to choose control
actions that maximize throughput.

Reinforcement learning models applied to architecture,
as a whole, can be understood using a representation based
on states, actions, and rewards. The agent attempts to learn
a policy function π, which defines the action a to take at a
given state s, based on a received reward r [6]. A learned
state-value function, following the policy, is then given as

V π(s) = E[
∑
t≥0

γ t ∗ rt|s0 = s, π] (1)

where γ is a discount factor (≤ 1), which dictates how much
the model should consider future rewards. The cumulative
rewards are then maximized by learning an optimal policy
π∗ that satisfies

π∗(s) = argmax
π

E[
∑
t≥0

γt ∗ rt|s0 = s, π]. (2)



3

Various models may implement different approaches to
learn this optimal policy, but largely address the same
problem of maximizing rewards. Q-learning is a noteworthy
example that models an action-value function by estimating
the value of an individual action, from a given state.

2.3 Feature Selection
Supervised (and semi-supervised) learning methods rely
upon input data features to model relationships and gener-
ate predictions. Consequently, approaches for feature selec-
tion can substantially impact model performance, including
concerns such as over-fitting and computational overhead,
as well as more abstract concerns, such as feature inter-
pretability. In some works, feature selection is entirely based
on expert knowledge. Additional, more general, approaches
can either supplant or supplement expert knowledge.

One set of approaches, called filter methods, considers
features individually using metrics involving statistical cor-
relation or information theoretic criteria such as mutual
information. These approaches are usually the least com-
putationally intensive so may be preferred for very large
feature sets, but model performance may be sub-optimal
since evaluation criteria in filter methods do not consider
feature context [7]; two features that provide little benefit
individually may be beneficial together. Many alternative
approaches therefore consider feature subsets.

Wrapper methods provide a black-box method for fea-
ture selection by directly assessing the performance of a
learning model [7]. Commonly applied greedy approaches
include forward selection and backward elimination. In for-
ward selection, features are progressively added to selected
feature subset based on improvement to the overall learning
model. Conversely, backward elimination removes features
progressively that provide little benefit.

Embedded methods integrate feature selection into the
learning model to provide a trade-off between filter and
wrapper methods [8]. Regularization is a widely used em-
bedded method that allows the learning model to be fit,
while simultaneously forcing feature coefficients to be small
(or zero). Features with zero coefficient values can then be
removed. This method eliminates iterative feature selection
present in wrapper methods, which can have high compu-
tational requirements [7].

3 LITERATURE REVIEW

This section reviews existing work that applies machine
learning to architecture. Work is organized by sub-system
(when applicable) or primary objective. We focus on design
and optimization, but also introduce general performance
prediction work.

3.1 System Simulation
Cycle-accurate simulators are commonly used in system
performance prediction, but require several orders of mag-
nitude more time than native execution. ML can offset this
penalty through a trade-off between simulation time and
accuracy. In general, ML can reduce execution time by 2-
3 orders of magnitude with relatively high accuracy (task
dependent, typically > 90%). Early work by Ipek et al. [9]
modeled architectural design spaces using an ANN ensem-
ble (a group of ANN predictors). Models were trained on
approximately 1% of the design space, then predicted CMP
performance with 4-5% error for random points, albeit only

in that specific configuration space. When combined with
SimPoints, predictions exhibit slightly higher error, but the
simulated instruction count is further reduced. Ozisikyilmaz
et al. [10] additionally predicted SPEC performance for
future systems that may be poorly modeled by existing
simulators. Evaluation was limited to randomly-sampled
data with relatively simple linear regression and neural
network models, but nevertheless demonstrated advantages
for pruned neural networks compared to standard single-
layer models (as in [9]). Several other ML approaches have
also been tested. Eyerman et al. [11] proposed a mechanistic-
empirical model for processor CPI prediction. In this ap-
proach, they used a generic mechanistic model with param-
eters inferred by a regression model. Their model is limited
to single-core performance prediction, but improves accu-
racy, ease of implementation (compared to purely mechanis-
tic models), and interpretability (compared to purely empir-
ical models). Zheng et al. [12], [13] explored cross-platform
prediction from Intel/AMD to ARM processors using linear
regression. Their first approach [12] made predictions based
on a local neighborhood of examples around the target point
to approximate non-linear behavior. They later [13] em-
phasized phase-level prediction, assuming that phase-level
behavior would be approximately linear. Notably, average
error for cycle count predictions is less than 1% using phase-
level profiling. This approach is, however, restricted to a
single target architecture and requires source code for phase-
level analysis, leaving significant opportunities for future
work. Finally, recent work by Agarwal et al. [14] introduced
a method to predict parallel execution speedup using single-
threaded execution characteristics. They trained separate
models for each thread count using application-level per-
formance counters. Although neural networks were omitted
due to limited data, evaluation found that Gaussian process
regression still provided promising results, particularly for
high thread counts.

3.2 GPUs
Design Space Exploration: GPU design space exploration
has proven to be a particularly favorable application for
ML due to a highly irregular design space; some kernels
exhibit relatively linear scaling while others exhibit very
complex relationships between configuration parameters,
power, and performance [15], [16], [17]. Jia et al. [15] pro-
posed Stargazer, a regression-based framework based on
natural cubic splines. Stargazer randomly samples approx-
imately 300 points from a target design space (933K points
in evaluation) for each application, then applies stepwise
regression on these points. Notably, the framework achieves
under 3.8% average performance prediction error. Wu et al.
[16] instead explicitly modeled scaling for compute units,
core frequency, and memory frequency. Scaling data from
training kernels was processed using k-means clustering to
group kernels by scaling behavior. An ANN then classifies
kernels into these clusters, allowing new kernels to be
classified and predictions made using cluster scaling factors.
This approach, in contrast to Jia et al. [15], therefore requires
just a few samples for new applications. Jooya et al. [17],
similar to Jia et al. [15], considered a per-application perfor-
mance/power prediction model, but additionally proposed
a scheme to predict per-application Pareto fronts. Many
ANN-based predictors were trained and the most accurate
subset was used as an ensemble for prediction. Prediction
accuracy was later improved by sampling points within a
threshold of the previously predicted Pareto-optimal curve.



4

Lin et al. [18] combined a performance predicting DNN with
a genetic search scheme to explore memory controller place-
ment. The DNN was used as a surrogate fitness function,
obviating slow system simulations. The resulting placement
improves system performance by 19.3%.

Cross-Platform Prediction: Porting applications for ex-
ecution on GPUs is a challenging task with potentially
uncertain benefits over CPU execution. Work has there-
fore examined methods to predict speedup or efficiency
improvements using just CPU execution behavior. Baldini
et al. [19] cast the problem as a classification task, train-
ing a modified nearest-neighbor and a support vector ma-
chine (SVM) model to determine, based on a threshold,
whether GPU implementation would be beneficial. Using
this approach, they predicted near-optimal configurations
91% of the time. In contrast, Ardalani et al. [20] trained
a large ensemble of regression models to directly predict
GPU performance for the code segment. Although several
code segments exhibit high error, the geometric mean of
the absolute value of the relative error is still just 11.6%
and the model successfully identifies several code segments
(both beneficial and non-beneficial) that are incorrectly pre-
dicted by human experts. Later work by Ardalani et al. [21]
introduced a completely static-analysis-based framework
using a random forest model for binary classification. This
approach eliminates both dynamic profiling and human
guidance, instead using features such as instruction mix,
branch divergence estimates, and kernel size to provide 94%
accuracy for binary speedup classification (using a speedup
threshold of 3).

GPU Specific Prediction & Classification: O’Neal et al.
[22] presented a methodology for next-generation GPU per-
formance prediction as cycles-per-frame (CPF) for DirectX
applications. They focused on Intel GPUs, profiling earlier-
generation architectures (e.g., Haswell GT2) to train next-
generation predictors. They found that different models
(i.e., linear vs non-linear) can produce more accurate results
depending on the prediction target (Broadwell GT2/GT3 vs
Skylake GT3), with the best performing models achieving
less than 10% CPF prediction error. Recent work by Li et
al. [23] presented a re-evaluation of commonly accepted
knowledge of GPU traffic patterns. They used a CNN and
t-distributed stochastic neighbor embedding on heatmap-
transformed traffic data, identifying eight unique patterns
with 94% accuracy.

Scheduling: GPU processing-in-memory (PIM) archi-
tectures can benefit from high memory bandwidth with
reduced data movement energy. Despite this benefit, poten-
tial limitations on PIM compute capabilities may introduce
complex trade-offs between performance and energy when
scheduling execution on various resources. For this reason,
Pattnaik et al. [24] proposed an approach using a regression
model to classify core affinity, thus dividing the workload,
and an additional regression model to predict execution
time, enabling dynamic task migration. Performance and
energy efficiency are improved by 42% and 27%, respec-
tively, over a baseline GPU architecture. Further improve-
ments are possible by improving core affinity classification
accuracy (compared to regression).

3.3 Memory Systems and Branch Prediction

Caches: Heuristic approaches for caching can incur perfor-
mance penalties due to dramatic workload variance. ML
approaches can learn these intricacies and offer superior

performance. Peled et al. [25] proposed a prefetcher ex-
ploiting semantic locality (data structures) using contex-
tual bandits (a simple RL variant), correlating contextual
information and candidate addresses for prefetching. Im-
plementation uses a two-level indexing method to dynam-
ically control state information, allowing online feature
selection with some additional overhead. Zeng and Guo
[26] proposed a long short-term memory (LSTM) model
(a recurrent neural network variant) for prefetching based
on local history and offset-delta tables. Evaluation showed
that the LSTM model enables accurate predictions over
longer sequence and higher noise resistance than prior
work. Several concerns relating to overhead and warm-up
time are addressed, with potential solutions remaining for
future work. Similarly, Braun et al. [27] extensively explored
LSTM prefetching accuracy under several common access
patterns. Experiments considered the impact of lookback
size (access history window) and LSTM model size for
several noise levels and independent access stream counts.
Recent work by Bhatia et al. [28] synthesized traditional
prefetchers with a perceptron-based prefetch filter, allowing
aggressive predictions without degrading accuracy. Evalua-
tion confirmed substantial coverage and IPC benefits offered
by the proposed scheme, with 9.7% IPC speedup over the
next best prefetcher when referenced to a no-prefetching
four-core baseline. ML has similarly been applied to data
reuse policies. For example, Teran et al. [29] predicted LLC
reuse with a perceptron model. In this approach, input
features are hashed to access saturating weight tables that
are incremented/decremented based on correct/incorrect
reuse prediction. These features are chosen empirically and
shown to significantly impact performance, thus presenting
an option for further optimization. Wang et al. [30] predicted
reuse prior to cache entry, only storing data in the cache
if there was predicted reuse. They used decision trees as
a low-cost alternative to ensemble models, achieving 60-
80% reduction in writes. Additional research has explored
the growing performance bottleneck in translation lookaside
buffers (TLBs). Margaritov et al. [31] proposed a scheme
for virtual address translation in TLBs based on learned
indices [32]. Evaluation showed nearly 100% accuracy for
predicted indices, but practical implementation will require
dedicated hardware to reduce calculation overhead (and is
left for future work).

Schedulers & Control: Controllers for memory and
storage systems influence both device performance and
reliability, thus representing another strong application for
ML models compared with heuristics. Ipek et al. [33] first
proposed an RL approach for memory controllers to capture
the balance between concurrency, delay, and several other
factors. The model predicted optimal actions (precharge, ac-
tivate, row read/write), improving system performance by
15% (in a two-channel system) over prior work. Mukundan
and Martinez [34] later built upon Ipek’s work, generalizing
the reward function to optimize energy, fairness, etc. They
also added power-up and power-down actions to enable a
further 8.6% improvement in performance and a significant
improvement in energy efficiency. Related work optimizes
communication energy between memory/storage and other
systems using ML. Manoj et al. [35] proposed a Q-learning
method for dynamic voltage swing control in through-
silicon-interposer transmission lines. Predictions for power
and bit error rate were quantized, then provided as input
to the model to determine a new voltage level. Although
their approach requires significant quantization to mini-



5

mize overhead, they still achieved 15.1% energy savings
compared to a static voltage baseline. Wang and Ipek [36]
reduce data movement energy through online clustering
and encoding. Several clusters are continuously updated at
a bit-level using majority voting for data in that cluster. The
total number of transmitted 1s is then minimized by XORing
new data with the closest learned cluster center. Kang and
Yoo [37] applied Q-learning to manage garbage collection
in SSDs by determining optimal periods of inactivity. Key
states are kept in the Q-table using LRU replacement, al-
lowing a vast state space and, ultimately, a 22% average tail
latency reduction over the baseline. Many states are, how-
ever, observed only once per workload, suggesting potential
benefits using deep Q-learning (DQL). Other work directly
considered system reliability. For example, Deng et al. [38]
proposed a regression-based framework to dynamically op-
timize performance and lifetime in non-volatile memories.
Their approach used phase-based application statistics to
manage several conflicting policies for write latency, write
cancellation, endurance, etc., guaranteeing a minimum life-
time with modest performance/energy improvements. Xiao
et al. [39] proposed a method for disk failure prediction
using an online random forest. They trained their model
using a disk status window to account for imprecision in
recorded failure date, enabling accurate predictions of soon-
to-be faulty drives. Comparison against other random forest
updating schemes (e.g., updating once a month) highlighted
accuracy benefits from consistent training that may be ex-
tended to related domains.

Branch Prediction: Branch prediction is a noteworthy
example of current ML application in industry, with ac-
curacy surpassing prior state-of-the-art non-ML predictors.
The perceptron-based branch predictor was first proposed
by Jiménez and Lin [40] as a promising high-accuracy al-
ternative to two-level schemes using pattern history tables.
Later research by St. Amant et al. introduced SNAP [41], a
perceptron-based predictor implemented using analog cir-
cuitry to enable an efficient and practically feasible design.
Perceptron weights and branch history were used to drive
current-steering DACs that perform the dot product as the
sum of currents. Jiménez [42] further optimized this design
using a per-branch history table, dynamic coefficients for
history importance, and a dynamic learning threshold. The
optimized design achieves 3.1% lower MKPI than L-TAGE.
Recent work with perceptron-based predictors by Garza et
al. [43] explored bit-level prediction for indirect branches.
Possible branch targets are evaluated using their similarity
(dot product) with the combined weights from eight feature
tables incorporating local and global history, ultimately
reducing MKPI by 5% compared to ITTAGE. Currently,
state-of-the-art conditional branch predictors (e.g., TAGE-
SC-L [44]) still hide significant IPC gains (14.0% for an Intel
Skylake architecture) in just a few hard-to-predict (H2P)
conditional branches [45]. Tarsa et al. [45] consequently pro-
posed “CNN Helper” predictors that target specific H2Ps
using simple two-layer CNNs. Results indicate strong appli-
cability across diverse workloads and present a promising
area for future work.

3.4 Networks-on-Chip
DVFS & Link Control: Modern computing systems ex-
ploit complex power control schemes to enable increas-
ingly parallel architectural designs. Heuristic schemes may
fail to exploit all energy-saving opportunities, particularly
in dynamic network-on-chip (NoC) workloads, leading to

significant benefits through proactive ML-based control.
Savva et al. [46] implemented dynamic link control using
several ANNs, each of which monitors a NoC partition.
These ANNs used just link utilization to learn a dynamic
threshold to enable/disable links. Despite energy savings,
their approach can cause high latency under dimension-
ordered routing. DiTomaso et al. [47] relocated flit buffers
to the links and dynamically controlled both link direc-
tion and power-gating with per-router classification trees.
Using a simple three-level tree to limit overhead, overall
NoC power is reduced by 85% and latency is reduced by
14% compared to a concentrated mesh. Winkle et al. [48]
explored ML-based power scaling in photonic interconnects.
Even a simple linear regression model provided promising
results, negligibly reducing throughput (versus no power-
gating) while reducing laser power consumption by 42%.
Reza et al. [49] proposed a multi-level ANN control scheme
that considered both power and thermal constraints on
task allocation, link allocation, and node DVFS. Individual
ANNs classified appropriate configurations for local NoC
partitions while a global ANN classified optimal overall
resource allocation. This scheme identifies the global opti-
mal NoC configuration with high accuracy (88%), but uses
complex ANNs that could impact implementation. Clark
et al. [50] proposed a router design for DVFS and eval-
uated several regression-based control strategies. Variants
predicted buffer utilization, change in buffer utilization, or
a combined energy and throughput metric. This work was
expanded by Fettes et al. [51], who introduced an RL control
strategy. Both regression and RL models enable beneficial
tradeoffs, although the RL strategy is most flexible.

Admission & Flow Control: As with NoC DVFS, both
admission and flow control can benefit from proactive pre-
diction. Early work by Boyan and Littman [52] introduced
Q-learning based routing in networks using delivery time
estimates from neighboring nodes, noting throughput ad-
vantages over traditional shortest path routing for high traf-
fic intensity. Several works have expanded upon Q-routing,
observing application in dynamically changing NoC topolo-
gies [53], improved capabilities in bufferless NoC fault-
tolerant routing [54], and high-performance congestion-
aware non-minimal routing [55]. More recent works have
instead focused on injection throttling and hotspot preven-
tion. For example, Daya et al. [56] proposed SCEPTER, a
bufferless NoC using single-cycle multi-hop paths. They
controlled injection throttling using Q-learning to maximize
multi-hop performance and improve fairness by reducing
contending flits. Future work could reduce Q-table over-
head which scales with NoC size in their implementation.
Wang et al. [57] instead used an ANN to predict optimal
injection rates for a standard buffered NoC. Additional pre-
processing (to capture both spatial and temporal trends) and
node grouping enables high accuracy predictions (90.2%)
and reduces execution time by 17.8% compared to an un-
optimized baseline. Soteriou et al. [58] similarly explored
ANN-based injection throttling to reduce NoC hotspots. The
ANN was trained to predict hotspots while recognizing
the impact of proposed injection throttling and dynamic
routing, providing a holistic mitigation strategy. The model
provides state-of-the-art results for throughput and latency
under synthetic traffic, but limited improvement under real-
world benchmarks, suggesting the potential for further opti-
mization. Another Q-learning approach, proposed by Yin et
al. [59], used DQL to arbitrate NoC traffic. They considered
a wide range of features and rewards while noting that



6

the proposed DQL algorithm is impractical due to over-
head. Regardless, evaluation exhibited modest throughput
improvements over round-robin arbitration.

Topology & General Design: Several works also applied
ML to higher-level NoC topology design, involving trade-
offs between power and performance, with some further
considering thermals. Das et al. [60] used a ML-based
STAGE algorithm to efficiently explore small-world in-
spired 3D NoC designs. In this approach, design alternates
between base/local search (adding/removing links in a hill-
climbing approach) and meta search (predicting beneficial
starting points for local search using prior results). The
same model was used again by Das et al. [61] to balance
link utilization and address TSV reliability concerns. The
STAGE algorithm was then enhanced by Joardar et al. [62]
to optimize a heterogeneous 3D NoC design. The models
explores multi-objective trade-offs between CPU latency,
GPU throughput, and thermal/energy constraints. All three
works [60], [61], [62] still rely upon hill-climbing for opti-
mization. Recent work by Lin et al. [63] instead explored
deep reinforcement learning in routerless NoC design. They
used a Monte Carlo tree search to efficiently explore the
search space and a deep convolutional neural network to
approximate both the action and policy functions, thereby
optimizing loop configurations. Further, the proposed deep
reinforcement learning framework can strictly enforce de-
sign constraints that may be violated by prior heuristic or
evolutionary approaches. Rao et al. [64] investigated multi-
objective NoC design optimization across a broad SoC fea-
ture space (from bandwidth requirements to SoC area). ML
models were trained using data from thousands of SoC con-
figurations to predict optimal NoC designs based on perfor-
mance, area, or both. Limited comparisons against human-
expert designs did not consider alternative techniques (e.g.,
AMOSA [65]), yet exhibited some promising results, moti-
vating research into effective features and models as well as
further comparisons against alternative techniques.

Performance Prediction: Existing NoC models based
on queuing theory are generally accurate, but rely on as-
sumptions of traffic distribution that may not hold for real
applications [66]. Qian et al. [66] emphasized how ML-based
approaches can relax the assumptions made by queueing
theory models. They constructed a mechanistic-empirical
model based on a communication graph, using support
vector regression (SVR) to relate several features and queu-
ing delays. Evaluation showed lower error (3% error vs
10% error) than an existing analytical approach. Sangaiah
et al. [67] considered both NoC and memory configuration
for performance prediction and design space exploration.
Following a standard approach, they sampled a small por-
tion of the design space, then trained a regression model
to predict the resulting system CPI. Evaluation generally
showed high accuracy, but lower accuracy for high-traffic
workloads (median error of 24%). Additional design space
exploration exhibited promising results, reducing the design
space from 2.4M points to less than 1000.

Reliability & Error Correction: Overhead introduced by
error correction in NoCs can be significant, especially when
re-transmission is required. Several works have, therefore,
explored ML-based control schemes. DiTomaso et al. [68]
trained a decision tree to predict NoC faults using a wide
range of parameters including temperature, utilization, and
device wear-out. These predictions allow proactive encod-
ing (on top of the baseline cyclic redundancy check) for
transmission that are likely to have errors. Wang et al. [69]

adopted a similar strategy for dynamic error mitigation,
but used an RL-based control policy to eliminate the need
for labeled training examples. Their approach provides an
average of 46% dynamic power savings (17% better than
the decision tree method [68]) compared with a static CRC
scheme. In both cases, ML-based proactive control chose
a more efficient scheme than CRC only. Wang et al. [70]
subsequently proposed a holistic framework for NoC de-
sign incorporating dynamic error mitigation, router power-
gating, and multi-function adaptive channel buffers (MFAC
buffers). They emphasized comprehensive benefits through
synergistic integration/control of several architectural inno-
vations, thus achieving substantial improvements in latency
(32%), energy-efficiency (67%), and reliability (77% higher
Mean Time to Failure) compared to a SECDED baseline.

3.5 System-level Optimization
Energy Efficiency Optimization: Significant work has be-
gun to consider systems in which workload execution is
constrained by total energy consumption rather than pro-
cessing resources. Control schemes incorporating ML have
shown promise in optimizing energy efficiency with min-
imal performance reduction, often enabling 60-80% reduc-
tions in the energy-delay product compared to race-to-idle
schemes. Won et al. [71] introduced a hybrid ANN + PI
(proportional-integral) controller scheme for uncore DVFS.
They initially trained the ANN offline, then refined pre-
dictions online using the PI controller. This hybrid scheme
was shown to reduce the energy-delay product by 27%
compared to a PI controller alone, with less than 3% per-
formance degradation compared to the highest V/F level.
Pan et al. [72] implemented a power management scheme
using a multi-level RL algorithm. Their method propagates
individual core states up a tree structure while aggregating
Q-learning representations at each level. Global allocation is
made at the root, then decisions are propagated back down
the tree, enabling efficient per-core control. Bailey et al. [73]
addressed power efficiency in heterogenous systems. Simi-
lar to Wu et al. [16], they clustered kernels by their scaling
behavior to train multiple linear regression models. Runtime
prediction used two sample configurations, one from CPU
execution and one from GPU execution, to determine the
optimal configuration. Lo et al. [74] focused on energy-
efficiency optimization for real-time interactive workloads.
They used linear regression to model execution time based
on annotations and code features, enabling stricter service
level guarantees at the cost of applicability when source
code is unavailable. Mishra et al. [75] also addressed real-
time workloads, combining control theory and several ML-
based models. Their framework was realized by offloading
learning to a server, allowing low overhead DVFS that
reduces energy consumption by 13% compared to the best
prior approach. Related work by Mishra et al. [2] applied
a comparatively complex hierarchical Bayesian model to
combine both offline and online learning. In this approach,
they accepted a high execution time penalty (0.8s) in or-
der to provide significantly more accurate predictions than
online or offline training alone. This approach therefore
targeted longer executing workloads, but can provide more
than 24% energy savings over the next best approach. Bai
et al. [76] implemented a RL-based DVFS control policy
adapted to a novel voltage regulator hierarchy using off-
chip switching regulators and on-chip linear regulators. In-
dividual RL agents adapt to a dynamically allocated power
budget determined by a heuristic bidding approach. The



7

design was enhanced using adaptive Kanerva coding [77]
to limit area/power overhead and experience sharing to
accelerate learning. Chen and Marculescu [78] (later Chen
et al. [79]) explored an alternative two-level strategy for RL-
based DVFS. Similar to Bai et al. [76], they used RL agents
at a fine-grain core level to select a V/F level based on an
allocated share of the global power budget. They achieved
further improvement by allocating power budget using a
performance-aware, albeit still heuristic-based, variant that
considers relative application performance requirements.
Imes et al. [80] explored single-application system energy
optimization for a broader range of configurations options
including socket allocation, HyperThread usage, and pro-
cessor DVFS. They identified several useful models, while
noting that further work could optimize models and pa-
rameters. Analysis also provided insight into the benefit
from single-model multi-resource optimization, particularly
for neural networks. Finally, recent work by Tarsa et al.
[81] considered an ML framework for post-silicon CPU
adaptations using firmware updates to microcontroller-
implemented models. Significant accommodations for sta-
tistical blindspots limit the rate of service-level-agreement
violations while optimizing performance per watt for both
general-purpose and application-specific deployment.

Task Allocation and Resource Management: In addi-
tion to energy control, ML offers an approach to allocate
resources to tasks or tasks to resources by predicting the
impact of various configurations on long-term performance.
Lu et al. [82] proposed a thermal-aware Q-learning method
for many-core task allocation. The agent considered only
current temperature (i.e., no application profiling or hard-
ware counters), receiving higher rewards for task assign-
ments resulting in greater thermal headroom. Evaluation
indicated an average 4.3◦C reduction in peak temperature
compared to a heuristic approach. Nemirovsky et al. [83]
introduced a method for IPC prediction and task schedul-
ing on a heterogeneous architecture. They predicted IPC
for all task arrangements using ANNs, then selected the
arrangement with the highest IPC. Evaluation highlighted
significant throughput gains (> 1.3x) using a deep (but high
overhead) neural network, indicating one possible applica-
tion for pruning (discussed in Section 5.2). Recent work has
also explored multi-level scheduling in hybrid CPU-GPU
clusters. Zhang et al. [84] proposed a deep reinforcement
learning (DRL) framework to divide video workloads, first
at the cluster level (selecting a worker node) and then
at the node level (CPU vs GPU). The two DRL models
act separately, but still work together to optimize overall
throughput. Allocating resources to tasks is another possible
approach. Early work by Bitirgen et al. [85] considered a
system with four cores and four concurrent applications. In
their approach, per-application ANN ensembles predicted
IPC for 2,000 configurations at each interval (500K cycles).
IPC predictions were then aggregated to choose the highest
performing overall system configuration. Scaling concerns
for per-application ensembles and exponentially increasing
configuration spaces could be addressed in future work. Re-
cent research has also considered low-level co-optimization
involving multiple components/resources. For example,
Jain et al. [86] explored concurrent optimization of core
DVFS, uncore DVFS, and dynamic LLC partitioning. These
options are optimized by individual agents (potentially
limiting co-optimization opportunities) at a relatively large
interval (1B instructions). Evaluation nevertheless indicated
noteworthy reductions in energy-delay-product through

multi-resource optimization. Finally, work by Ding et al.
[87] established a somewhat contradictory trend between
model accuracy and system optimization goals based on
improvements for data scarcity and model bias. Specifically,
they found that state-of-the-art models exhibit diminish-
ing returns for accuracy and instead benefit from domain
knowledge (e.g., focus sampling on the optimal front).

Chip Layout: Work by Wu et al. [88] demonstrated
uses for ML in chip layout, deviating from the common
applications including control, prediction, and design space
exploration. They used k-means to cluster flip-flops during
physical layout, minimizing clock wirelength at the expense
of signal wirelength, noting that clock networks can con-
sume more than 40% of chip power. They included con-
straints on maximum flip-flop displacement and cluster size,
generating designs with 28.3% reduced displacement, 3.2%
reduced total wirelength, and 4.8% reduced total switching
power compared to the prior state-of-the-art approach.

Security: Malware detection, a traditionally software-
based task, has been explored using machine learning to
enable reliable hardware-based in-execution detection. For
example, Ozsoy et al. [89] test both logistic regression (LR)
and neural network classifiers trained on low-level hard-
ware counters. Optimization based on reduced precision
and feature selection provides high accuracy (100% malware
detection and less than 16% false positives) with minimal
overhead (0.04% core power and 0.19% core logic area) for
the LR model.

3.6 ML-Enabled Approximate Computing
Approximate computing has many facets, including circuit
level approximation (such as reduced precision adders),
control level approximation (relaxing timings, etc), and
data level approximation. Methods using ML generally fall
within this last category, offering a powerful function/loop
approximation technique that commonly provides 2-3 times
application speedup and energy reduction with limited im-
pact on output quality. Esmaeilzadeh et al. [90] introduced
NPU, a new approach to programmable approximation
using neural networks. They developed a framework to
realize Parrot transformations that translate annotated code
segments into neural networks approximations. Tightly in-
tegrating the NPU with the CPU allowed an average 2.3x
speedup and 3.0x energy reduction in studied applications.
This framework was later extended by Yazdanbakhsh et al.
[91] to implement neural approximation on GPUs. Neu-
ral approximation was integrated into the existing GPU
pipeline, enabling component re-use and approximately
2.5x speedup and 2.5x reduced energy. Grigorian et al.
[92] presented a different approach for a multi-stage neu-
ral accelerator. Inputs are first sent through a relatively
low accuracy/overhead neural accelerator, then checked for
quality; acceptable results are committed, while low quality
approximations are forwarded to an additional, more pre-
cise, approximation stage. The problem with these works
is that error is either constant [90], [91] or requires several
stages with potentially redundant approximation [92]. For
that reason, Mahajan et al. [93] introduced MITHRA, a co-
designed hardware-software control framework for neural
approximation. MITHRA implements configurable output
quality loss with statistical guarantees. ML classifiers predict
individual approximation error, allowing comparison to a
quality threshold. Recent work by Oliveira et al. [94] also
explored approximation using low-overhead classification
trees. Even with software-based execution, they achieved



8

application speedup comparable to an NPU [90] hardware
implementation. Finally, ML has also been used to mitigate
the impact of faults in existing approximate accelerators.
Taher et al. [95] observed that faults tend to manifest
in a similar manner across many input test vectors. This
observations enables effective error compensation using a
classification/regression model to correct output based on
predicted faults for a given input.

4 ANALYSIS OF CURRENT PRACTICE

This section examines varying techniques employed in ex-
isting work. These comparisons emphasize potentially use-
ful design practices and strategies for future work.

Work is divided into two categories that represent a nat-
ural division in design constraints and operating timescales
and therefore correspond to differing design practices. The
first category, online ML application, encompasses work
that directly applies ML techniques at run-time, even if
training is performed offline. Design complexity in this
work is therefore inherently limited by practical constraints
such as power, area, and real-time processing overhead. The
second category, offline ML application, instead applies ML
to guide architectural implementation, involving tasks such
as design and simulation. Consequently, models for offline
ML application can exploit higher complexity and higher
overhead options at the cost of training/prediction time.

4.1 Online ML Application
Model Selection: Online ML applications primarily use
either decision trees or ANNs, in the case of supervised
learning models, and either Q-learning or deep Q-learning,
in the case of RL models. Note that tasks for these learn-
ing approaches are not necessarily disjoint, particularly for
control. Fettes et al. [51] cast DVFS as both a supervised
learning regression task and as a reinforcement learning
task. The supervised learning approach predicted buffer
utilization or change in buffer utilization to determine an
appropriate DVFS mode. In contrast, the RL approach di-
rectly used DVFS modes as the action space. Both models
can perform well, but the RL model is more universally
applicable since the energy/throughput trade-off can be
tailored to application needs and does not require threshold
tuning. This certainly does not mean that RL is a one-model-
fits-all solution. Supervised learning models find strong
application in function approximation [90], [91], [92], [94]
and branch prediction tasks [41], [42], which are far less
suitable (if not impossible) to approach using RL since these
tasks cannot be represented well as a sequence of actions.

Implementation & Overhead: Implementation of online
ML applications highlight limitations in data availability,
storage space for models, etc., indicating the need for an
efficient, and generally low complexity, model. These lim-
itations will likely become more important to consider as
more research moves towards real-world implementation.

Several NoC-based works [46], [56], [71] have applied
different methods for global data collection to support ML
models. Daya et al. [56] implemented self-learning injection
throttling using a separate bufferless starvation network
that carries a starvation flag, encoded as a one-hot N-bit
vector for a network with N nodes. These starvation vectors
are propagated to all nodes, allowing individual node-
based Q-learning agents to determine appropriate injection
throttling. Soteriou et al. [58] similarly used a dedicated
networks to collect buffer utilization and VC occupancy

statistics. The ANN-based DVFS control proposed by Won
et al. [71] eschewed an additional status/data network by
encoding data into unused bits in standard packet headers.
Data is opportunistically collected by a central control unit
as packets pass through its router. This method introduces
potential concerns about data staleness, but prior work [96]
observed nearly identical performance to omniscient data
collection for sufficiently large (50K cycle) control windows.
Smaller time windows can be accommodated by sending
dedicated packets, as done by Savva et al. [46].

Implementation can also consider the use of either hard-
ware or software models. Implementation using dedicated
hardware will usually experience lower execution time
overhead, but there are other considerations. Esmaeilzadeh
et al. [90] implemented a neural processor (NPU) for func-
tion approximation using a dedicated hardware module.
They also considered a software implementation, but ob-
served a prohibitive increase in instruction count for soft-
ware execution compared to a baseline x86 function. Later
work by Oliveira et al. [94] found that function approxi-
mation using a simple classification tree can achieve com-
parable results to NPU [90] for application speedup and
error rate in several applications (albeit somewhat worse on
average). Their purely software implementation highlights a
trade-off between area/power and accuracy/performance.
Won et al. [71] observed a similar trade-off, choosing to
implement an ANN in software using an on-die microcon-
troller rather than dedicated hardware. This implementation
consumes several orders of magnitude more cycles (15K
cycles for inference), but requires 50mW less average power
than a hardware implementation.

Approaches for hardware implementation may also vary
based on the task. A “standard” ANN implementation is
observed in work by Savva et al. [46]. They incorporated
a finite state machine for control, an array of multiply-
accumulate (MAC) units for calculation, a register array to
load and store results, and a lookup-table-based activation
function. Both MAC array width and calculation precision
can be adjusted to balance power/area and accuracy/speed.
In contrast, St. Amant et al. [41] implemented a percep-
tron branch predictor using a mixed signal design. They
realized dot products in analog circuitry, leveraging tran-
sistor sizing and current summing to achieve a feasible
overhead. Variance also exists in hardware for RL mod-
els. The “standard” Q-learning implementation requires a
lookup table to store state-action values. Ipek et al. [33] as
well as Mukundan and Martinez [34] instead used CMAC
[97], replacing a potentially extensive Q-learning table with
multiple coarse-grain overlapping tables. This approach also
included hashing, using hashed state attributes to index the
CMAC tables. Taken together, these two methods balance
generalization and overhead, although may introduce colli-
sions/interference depending on the task. Further pipelin-
ing the hashing, CMAC table lookup, and calculation allows
more possible action-values to be evaluated per cycle.

Optimization: Online ML applications with online train-
ing benefit from adaptivity to run-time workload charac-
teristics. Despite these benefits, low model accuracy can
negatively impact system performance, most notably at the
start of execution or during periods of high variance in
workload characteristics. Adaptations to control and learn-
ing can be considered to avoid these detrimental impacts.
Some RL-based work [25] considered mitigating the impact
of poor actions during exploration by introducing “shadow”
operations. These operations are low confidence actions



9

suggested by the model that are still used in model updates
but not executed by the system. Consequently, the model
gains feedback on the goodness of the action without nega-
tively impacting the system. In a supervised learning based
control task, Won et al. [71] trained an ANN online using
control actions made by a PI controller, which exhibits far
less start-up delay. Following training, control decisions are
made using a hybrid combination based on error and con-
sistency, allowing complementary control. In the simplest
case, checking the performance of a default configuration,
as in [38], provides a guarantee that the ML model will not
perform worse than the default, but can perform better.

In most works, ML models replace existing approaches
(commonly a heuristic). Nevertheless, several recent works
[28], [45] have demonstrated significant advantages by
combining both traditional (non-ML) and ML approaches.
These improvements are derived from the orthogonal
prediction/decision-making capabilities of the two ap-
proaches, thus enabling synergistic performance improve-
ments. This method can also enable lower-cost ML appli-
cation by focusing on particular shortcomings in traditional
approaches. Both recent works [28], [45] consider just branch
prediction, thus significant opportunities exist to explore
this potential co-design paradigm.

4.2 Offline ML Applications
Model/Feature Selection: Offline ML applications gener-
ally exhibit substantial model/feature diversity since the
model itself is not tied to a particular architecture. Model
and feature selection therefore focuses more on maxi-
mizing model accuracy while minimizing overall learn-
ing/prediction time. Design space exploration, in particular,
can be approached using either iterative search methods
for direct optimization or supervised learning methods to
select optimal points based on the predicted optimality of
a design. Several works [60], [61], [62] used an iterative
STAGE [98] algorithm that optimizes local search for 3D
NoC links by learning an evaluation function to predict local
search results from a given starting point. Recent work has
instead applied deep reinforcement learning [63] to router-
less NoC design. The proposed Monte Carlo tree search,
along with actions suggested by a convolutional neural
network, provide a highly efficient search process. Parallel
threads are also utilized to scale design space exploration
with increasing computational resources. System-level de-
sign space exploration has favored more standard super-
vised learning approaches [17], [64], [67]. Specific model
choices vary, with linear [17], [64] and non-linear [67] regres-
sion models, as well as random forests and neural networks
[64] finding implementation. As in online ML applications,
discussed in Section 4.1, some tasks are naturally limited to
supervised learning methods. Cross-architecture prediction
is an exemplar [12], [13], [15], [19], [20].

Optimization: The usefulness of an ML model in offline
ML applications is largely determined by overhead relative
to traditional design approaches. Optimization therefore
primarily focuses on improving data efficiency and overall
model accuracy.

Ensemble methods have been proposed in online ML ap-
plications [38], but primarily find application in offline ML
applications as ensembles can be made arbitrarily large (rel-
ative to available computation resources). Several optimiza-
tions have been suggested to improve efficiency. Jooya et al.
[17] trained many neural networks using slightly different
configurations and generated an ensemble using a subset of

the models that generalized well and were most insensitive
to input noise. They further introduced outlier detection
by filtering predictions whose performance and/or power
predictions differ greatly from the closest configuration in
training data. Ardalani et al. [20] instead kept all 100 models
that they trained, noting that models may be very strong
predictors in one application but weak predictors in another.
They remedied this dilemma by selecting only the 60 closest
individual predictions to the median prediction.

Sampling method optimization, while not unique to
architecture tasks, are nevertheless important to consider
in improving model accuracy. Sangaiah et al. [67] consid-
ered potential systematic biases in their uncore performance
prediction model. Specifically, they observed that uniform
random sampling may not adequately capture performance
relationships in a non-uniform configuration space (as
in cache configurations using powers of two for sizing).
They therefore used a low-discrepancy sampling technique,
SOBOL [99], to remove this systematic bias and prevent
performance over-prediction for low-end configurations.

4.3 Domain Knowledge & Model Interpretation
The powerful relationship learning capabilities offered by
ML algorithms enable black-box implementation in many
tasks (i.e., without consideration for task-specific charac-
teristics), but may fail to capitalize on additional domain
knowledge that could improve interpretability or overall
model performance. Additionally, in some applications, do-
main knowledge can help identify aberrant behavior and,
again, improve overall model usefulness. These themes are
highlighted in several specific works, but can be generally
applicable for ML applied to architecture.

One approach uses mechanistic-empirical models, syn-
thesizing a domain knowledge based mechanistic frame-
work with empirical ML based learning for specific param-
eters. These models simplify implementation compared to
purely mechanistic models [11], can avoid incorrect assump-
tions made in purely mechanistic models [66], and can offer
higher accuracy than purely empirical models by avoiding
overfitting [11]. Eyerman et al. [11] also demonstrated how
these models can be used to construct CPI stacks, allowing
meaningful alternative design comparisons.

Deng et al. [38], in their work predicting optimal NVM
write strategies, presented a case for tuning ML models
based on task specific domain knowledge. Following ini-
tial analysis, they discovered how a single configuration
parameter (wear quota) can result in higher complexity
and sub-optimal prediction accuracy for IPC and system
energy, even with quadratic regression and gradient boost-
ing models. Excluding wear quota from the configuration
space, then later applying it to the predicted optimal con-
figuration, provided a 2-6% improvement in prediction
accuracy. Ardalani et al. [20] similarly examined inherent
imperfections in their learning model for cross-platform
performance prediction. Some predictions can be easy for
learning models and hard for humans, representing an ideal
scenario for ML application; the converse can also be true.
In both cases, ML application is strengthened by considering
task characteristics.

5 FUTURE WORK

This section synthesizes observations and analysis from
Section 3 and Section 4 to identify opportunities and detail
the need for future work. These opportunities may come



10

at the model level, exploiting improved implementation
strategies and learning capabilities, or at the application
level, addressing the need for generalized tools or exploring
altogether new areas.

5.1 Investigating Models & Algorithms

Existing works generally apply ML at a single time-scale or
level of abstraction. These limitations motivate investigation
into models and algorithms that capture the hierarchical
nature of architecture, both in terms of system design and
execution characteristics.

Perform Phase-level Prediction: Application analysis
using basic blocks [100] has long been a useful method for
simulation, made possible by identifying unique and repre-
sentative phases in program execution. Phase-level predic-
tion offers analogous benefits for ML applied to architec-
ture. A few recent works, in particular, have demonstrated
promising results, with high accuracy for both performance
prediction [13] as well as energy and reliability (lifetime)
[38]. In general, most work [2], [17], [67] has not yet adopted
phase-level prediction techniques (or does not explicitly
mention their methodology). Specifically, future work could
explore predictions for control and system reconfiguration
based on phase-level behavior, rather than either static
windows [85] or application-level behavior [75], [101].

Exploit Nanosecond Scale: Coarse-grain ML, used in
many DVFS control schemes, provides significant benefits
over standard control-theory based schemes, yet fine grain
control can provide even greater efficiency. Specifically,
analysis by Bai et al. [76] indicated very rapid changes in
energy consumption, on the order of 1K instructions for
some applications. Exploiting these brief intervals requires
careful consideration for both the model and the algorithm.
Future work may optimize existing algorithms such as
experience sharing [102] and hybrid/tandem control [71],
or consider approaches more suited for novel models (e.g.,
hierarchical models). These approaches could also enable
additional nanosecond-scale co-optimization opportunities,
such as dynamic LLC partitioning, to extract further effi-
ciency gains.

Apply Hierarchical & Multi-agent Models: Application
execution in computer systems naturally follows a hierar-
chical structure in which, at the top level, tasks are allo-
cated to cores, then cores are assigned dynamic power and
resource budgets (e.g., LLC space), and finally, at the bot-
tom level, data/control packets are sent between cores and
memory. Consequently, a single machine learning model
may struggle to learn appropriate design/control strategies.
Furthermore, in the case of reinforcement learning models,
it can be exceedingly difficult to accurately assign credits to
specific low-level actions based on their impact on overall
execution time, energy efficiency, etc. One promising ap-
proach in recent work is hierarchical models [103]. Hier-
archical reinforcement learning models enable goal-directed
learning that is particularly beneficial in environments with
sparse feedback (e.g., task allocation). Applying hierarchical
learning to architecture could therefore enable more effec-
tive multi-level design and control. Multi-agent models are
another promising area in machine learning research. These
models tend to focus on problems in which reinforcement
learning agents have only partial observability of their
environment. Although partial-observability may not be a
primary concern in individual computer systems, recent
work [104] has applied this concept to internet packet rout-

ing and demonstrated convergence benefits via improved
cooperation between individual agents.

5.2 Enhancing Implementation Strategies
Increasingly complex models require effective strategies and
techniques to reduce overhead and enable practical imple-
mentation. Model pruning and weight quantization, as dis-
cussed below, are two particularly effective techniques with
proven benefits in accelerators, while many other promising
approaches are also being explored [105].

Explore Model Pruning: Model complexity can be a
limiting factor in online ML applications. A standard Q-
learning approach requires a potentially extensive table to
store action-values. Neural network based approaches for
both RL (in Deep Q-Networks) and supervised learning
require network weight storage and additional processing
capabilities. Neural networks, in particular, are therefore
generally constrained to a few layers in existing work, with
many using just one hidden layer [46], [71], [85], [93] and
some using one or two hidden layers [90], [91].

Recent research on neural networks has demonstrated
promising methods to reduce model complexity through
pruning [106], [107]. The general intuition is that many
connections are unnecessary and can therefore be pruned.
Iteratively pruning a high-complexity network, then re-
training from scratch on the sparse architecture achieves
good results, with some work demonstrating very high
sparsity (>90%) and little accuracy penalty [107].

Pruning applied to neural networks, either in deep Q-
learning or supervised learning regression/classification,
offers a method to train complex models for high accuracy,
then prune for feasible implementation. Deep Q-learning
application has, thus far, been limited to two works [51],
[59], one of which is currently impractical to implement
[59]. Future work may instead consider pruned deep Q-
networks as a useful alternative to standard Q-learning
approaches. Pruning also provides a substantial opportunity
for future work on performance prediction (as in DVFS con-
trol) and function approximation (as in ML-enabled approx-
imate computing). System-level approximation (discussed
in Section 5.4) may particularly benefit from pruning high
complexity models.

Explore Quantization: Existing work primarily applies
quantization to state values in Q-learning to enable practical
Q-table implementation. Similarly, neural networks benefit
from potential reduction in execution time, power, and
area by reducing multiply-accumulator precision. Recent
works, however, suggest a new spectrum of opportunities
for alternative hardware implementations based on reduced
precision models.

Binary neural networks, for example, quantize weights
to be either +1 or -1, enabling computation based on bit-
wise operations rather than arithmetic operations [108]. An
additional approach considered quantizing neural network
weights into finite (but non-binary) subsets in order to re-
place multiply operations with lookup-table accesses [109],
allowing higher precision and lower execution time, albeit
with potentially higher area cost. Future work on ML appli-
cation can exploit similar hardware implementations while
exploring optimal quantization levels for various tasks and
control schemes.

5.3 Developing Generalized Tools
Existing machine learning tools (e.g., scikit-learn [110]) have
proven useful for relatively simple ML applications. Never-



11

theless, complex design and simulation tasks require more
sophisticated tools to enable rapid task-specific optimiza-
tions using general-purpose frameworks.

Enable Broad Application & Optimization: Purpose-
built architectural tools, similar to heuristic design strate-
gies, can be useful in enabling design, exploration, and sim-
ulation that satisfies a common use case. These approaches
may still be limited in their application to a specific problem,
optimization criteria, system configuration, etc. Given the
fast-paced nature of architectural research (and machine
learning research), there is a need to develop more gener-
alized tools and easily modifiable frameworks to address
broader applications and optimization options.

ML-based design tools are especially promising, with
recent works demonstrating successful application to im-
mense design spaces (e.g., exceeding 1012 in [63]). Oppor-
tunities for new design tools are not, however, limited to
specific architectural components. Chip layout is a notable
example in which even simple clustering algorithms can
dramatically outperform existing heuristic approaches [88].
Future work can also continue to develop more broadly
applicable tools for performance and power prediction.
In particular, recent work on cross-platform performance
prediction [21] suggests the possibility for high prediction
accuracy with purely static features, thus representing an-
other potential area for additional research.

Enable Widespread Usage: Generalized tools enable
additional benefit by facilitating rapid design and evalua-
tion. Using a machine learning approach, one might simply
modify training data (in a supervised learning setting) or
action/reward representation (in a reinforcement learning
setting) rather than exploring models, data representation
strategies, search approaches, etc., possibly without a priori
machine learning experience. For example, recent work
[63] envisioned reuse of a deep reinforcement learning
framework for diverse NoC-related design tasks involving
interposers, chiplets, and accelerators. While the framework
might not be compatible with all work, especially in novel
areas, it may provide a better foundation for machine learn-
ing application to architectures, especially for individuals
with limited machine learning background.

5.4 Embracing Novel Applications
Opportunities abound for future work to apply ML to
both existing and emerging architectures, replace heuristic
approaches to enable long-term scaling, and advance capa-
bilities for automated design.

Explore Emerging Technologies: Several proposals [30],
[37], [38], [39] establish how ML can be used to optimize
both standard (energy, performance) and non-standard (life-
time, tail-latency) criteria. These non-standard criteria are
shown to be particularly problematic in emerging technolo-
gies as these technologies cannot easily find widespread
implementation without some reliability guarantees. Apply-
ing ML to optimize both standard and non-standard criteria
therefore provides a method for future work to intelligently
balance control strategies dynamically, rather than relying
upon a heuristic approach.

Explore Emerging Architectures: ML application to
emerging architectures presents a similar benefit by en-
abling rapid development, even with limited best-practice
knowledge, which may take time to develop. Work in
long-standing design areas, such as task allocation and
branch prediction, may incorporate best-practice domain
knowledge to guide approaches, whether applying ML or

some other traditional method. Best practices for emerging
architectures may not be immediately obvious. For example,
ML application to 2D photonic NoCs [48], 2.5D processing-
in-memory designs [24], and 3D NoCs [60], [61], [62] have
all shown strong performance over existing approaches.
Future work can explore ML application to novel concerns
such as connectivity and reconfigurability in interposers and
domain-specific accelerators.

Expand System-Level Approximate Computing: As
discussed in Section 3.6, ML applications for approximate
computing have been mostly limited to function approxima-
tion. However, there are many other facets of approximate
computing that have already been implemented in non-ML
works, which can be reap additional benefits by utilizing
ML. For example, APPROX-NoC [111] reduces network
traffic using approximated and encoded data. Another work
explored a multi-faceted approximation scheme for a smart
camera system [112] using approximate DRAM (lower re-
fresh rate), approximate algorithms (loop skipping) and ap-
proximate data (lower sensor resolution). Existing compiler-
based work [113] for system-wide approximation enhances
prior capabilities to determine approximable code, but relies
upon heuristic searches with representative inputs. Conse-
quently, this method does not provide statistical guarantees,
such as those in MITHRA [93]. Future work may explore
searches based on deep reinforcement learning (or perhaps
hierarchical reinforcement learning) to incorporate existing
approximation techniques into a scalable framework for
high-dimensional approximation and co-optimization.

Implement System-Wide, Component-Level Optimiza-
tion: Recent work has begun to explore broader ML-based
design and optimization strategies. MLNoC [64] explores
a wide SoC feature space for NoC design optimization.
Core and uncore DVFS are combined in Machine Learned
Machines [86], along with LLC dynamic cache partitioning
to explore co-optimization potential at run-time. Related
DNN accelerator research [114] proposed co-optimization of
hardware-based (e.g., bitwidth) and neural network param-
eters (e.g., L2 regularization). These works motivate consid-
eration for system-wide, component-level ML application.

Existing system-level optimization schemes (e.g., [80],
[83], [101]) consider configuration opportunities at just a
single and very high level of abstraction (e.g., task allocation
or big.LITTLE core configurations). Although these works
may include low-level features such as NoC utilization and
DRAM bandwidth in their ML models, they do not account
for the impact of component-level optimization techniques
such as NoC packet routing, cache prefetching, etc. We in-
stead envision an ML-based system-wide, component-level
framework for run-time optimization. In this framework,
control decisions would involve a larger hierarchy of both
component-level (or lower) features and control options as
well as higher-level decisions, allowing a more comprehen-
sive and precise perspective for run-time optimization.

Advance Automated Design: While fully automated
design might be the ultimate objective, increasingly auto-
mated design is nevertheless an important milestone for
future work. Specifically, as more tasks are automated,
there is greater potential to enable a positive-feedback loop
between machine learning and architecture, providing im-
mense practical benefits for both fields. There are, of course,
a number of intervening challenges that must be solved,
each of which represents a substantial area for future work.

One challenge involves modeling the hierarchical struc-
ture of architectural components. This model would likely
benefit from integrating pertinent characteristics across the



12

system stack, from process technology to full-system behav-
ior, thus generating a highly accurate representation for real-
world systems. Another research direction could explore
methods for machine learning models to identify potential
design aspects for improvement. Ideally, this model could
explore not just reconfiguration of pre-existing options (as
in [115]), but also generate novel configuration options. Inte-
grating these and potentially other capabilities may provide
a framework to advance automated design.

6 CONCLUSION

Machine learning has rapidly become a powerful tool in
architecture, with established applicability to design, opti-
mization, simulation, and more. Notably, ML has already
been successfully applied to many components, including
the core, cache, NoC, and memory, with performance often
surpassing prior state-of-the-art analytical, heuristic, and
human-expert strategies. Widespread application is further
facilitated by diverse training methods and learning mod-
els, allowing effective trade-offs between performance and
overhead based on task requirements. These advancements
are likely just the beginning of a revolutionary shift in
architecture.

Optimization opportunities at the model level involv-
ing pruning and quantization offer broad benefits by en-
abling more practical implementation. Similarly, opportu-
nities abound to extend existing work using ever-more-
powerful ML models, enabling finer granularity, system-
wide implementation. Finally, ML may be applied to en-
tirely new aspects of architecture, learning hierarchical or
abstract representations to characterize full system behavior
based on both high and low level details. These extensive
opportunities, along with yet to be envisioned possibilities,
may eventually close the loop on highly (or even fully)
automated architectural design.

REFERENCES

[1] S. Kotsiantis, “Supervised machine learning: A review of classifi-
cation techniques,” in Proceedings of the 2007 Conference on Emerg-
ing Artificial Intelligence Applications in Computer Engineering: Real
World AI Systems with Applications in eHealth, HCI, Information
Retrieval and Pervasive Technologies, pp. 3–24, 2007.

[2] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffman, “A proba-
bilistic graphical model-based approach for minimizing energy
under performance constraints,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Mar. 2015.

[3] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, Sep. 1999.

[4] J. Shlens, “A tutorial on principal component analysis,” 2014.
arXiv:1404.1100.

[5] M. Alawieh, F. Wang, and X. Li, “Efficient hierarchical perfor-
mance modeling for integrated circuits via bayesian co-learning,”
in Design Automation Conference (DAC), June 2017.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, USA: MIT Press, 2nd ed., 1998.

[7] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” The Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, Mar. 2003.

[8] J. Li, K. Chen, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM Computing
Surveys, vol. 50, Jan. 2018.

[9] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caru-
ana, “Efficiently exploring architectural design spaces via predic-
tive modeling,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Oct.
2006.

[10] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Machine learn-
ing models to predict performance of computer system design
alternatives,” in International Conference on Parallel Processing
(ICPP), Sept. 2008.

[11] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical
processor performance modeling for constructing cpi stacks on
real hardware,” in International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), Apr. 2011.

[12] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-
based analytical cross-platform performance prediction,” in Inter-
national Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), July 2015.

[13] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level
cross-platform power and performance estimation,” in Design
Automation Conference (DAC), June 2016.

[14] N. Agarwal, T. Jain, and M. Zahran, “Performance prediction
for multi-threaded applications,” in International Workshop on AI-
assisted Design for Architecture (AIDArc), held in conjunction with
ISCA, June 2019.

[15] W. Jia, K. A. Shaw, and M. Martonosi, “Stargazer: Automated
regression-based gpu design space exploration,” in International
Symposium on Performance Analysis of Systems and Software (IS-
PASS), Apr. 2012.

[16] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and
D. Chiou, “Gpgpu performance and power estimation using ma-
chine learning,” in International Symposium on High-Performance
Computer Architecture (HPCA), Feb. 2015.

[17] A. Jooya, N. Dimopoulos, and A. Baniasadi, “Multiobjective gpu
design space exploration optimization,” in International Confer-
ence on High Performance Computing & Simulation (HPCS), July
2016.

[18] T.-R. Lin, Y. Li, M. Pedram, and L. Chen, “Design space explo-
ration of memory controller placement in throughput processors
with deep learning,” in IEEE Computer Architecture Letters, vol. 18,
Mar. 2019.

[19] I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance
from cpu runs using machine learning,” in International Sympo-
sium on Computer Architecture and High Performance Computing
(SBAC-PAD), Oct. 2014.

[20] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu,
“Cross-architecture performance prediction (xapp) using cpu
code to predict gpu performance,” in International Symposium on
Microarchitecture (MICRO), June 2015.

[21] N. Ardalani, U. Thakker, A. Albarghouthi, and K. Sankaralingam,
“A static analysis-based cross-architecture performance predic-
tion using machine learning,” in International Workshop on AI-
assisted Design for Architecture (AIDArc), held in conjunction with
ISCA, June 2019.

[22] K. O’Neal, P. Brisk, E. Shriver, and M. Kishinevsky, “Hal-
wpe: Hardware-assisted light weight performance estimation for
gpus,” in Design Automation Conference (DAC), June 2017.

[23] Y. Li, D. Penney, A. Ramamurthy, and L. Chen, “Characterizing
on-chip traffic patterns in general-purpose gpus: A deep learning
approach,” in International Conference on Computer Design (ICCD),
Nov. 2019.

[24] A. Pattnaik, X. Tang, A. Jog, O. Kayran, A. K. Mishra, M. T.
Kandemir, O. Mutlu, and C. R. Das, “Scheduling techniques
for gpu architectures with processing-in-memory capabilities,”
in International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sept. 2016.

[25] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in
International Symposium on High-Performance Computer Architecture
(HPCA), June 2015.

[26] Y. Zeng and X. Guo, “Long short term memory based hardware
prefetcher,” in International Symposium on Memory Systems (Mem-
Sys), Oct. 2017.

[27] P. Braun and H. Litz, “Understanding memory access patterns
for prefetching,” in International Workshop on AI-assisted Design
for Architecture (AIDArc), held in conjunction with ISCA, June 2019.

[28] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in International
Symposium on Computer Architecture (ISCA), June 2019.

[29] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for
reuse prediction,” in International Symposium on Microarchitecture
(MICRO), Oct. 2016.

[30] H. Wang, X. Yi, P. Huang, B. Cheng, and K. Zhou, “Efficient ssd
caching by avoiding unnecessary writes using machine learn-
ing,” in International Conference on Parallel Processing (ICPP), Aug.
2018.

[31] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Virtual
address translation via learned page tables indexes,” in Conference
on Neural Information Processing Systems (NeurIPS), Dec. 2018.

[32] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The
case for learned index structures,” in International Conference on
Management of Data (SIGMOD), June 2018.



13

[33] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-
optimizing memory controllers: A reinforcement learning ap-
proach,” in International Symposium on High-Performance Computer
Architecture (HPCA), June 2008.

[34] J. Mukundan and J. F. Martinez, “Morse: Multi-objective re-
configurable self-optimizing memory scheduler,” in International
Symposium on High-Performance Computer Architecture (HPCA),
Feb. 2012.

[35] S. Manoj, H. Yu, H. Huang, and D. Xu, “A q-learning based
self-adaptive i/o communication for 2.5d integrated many-core
microprocessor and memory,” IEEE Transactions on Computers,
vol. 65, June 2015.

[36] S. Wang and E. Ipek, “Reducing data movement energy via
online data clustering and encoding,” in International Symposium
on Microarchitecture (MICRO), Oct. 2016.

[37] W. Kang and S. Yoo, “Dynamic management of key states for
reinforcement learning-assisted garbage collection to reduce long
tail latency in ssd,” in Design Automation Conference (DAC), June
2018.

[38] Z. Deng, L. Zhang, N. Mishra, H. Hoffman, and F. T. Chong,
“Memory cocktail therapy: A general learning-based framework
to optimize dynamic tradeoffs in nvms,” in International Sympo-
sium on Microarchitecture (MICRO), Oct. 2017.

[39] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu, “Disk failure
prediction in data centers via online learning,” in International
Conference on Parallel Processing (ICPP), June 2018.

[40] D. A. Jiménez and C. Lin, “Dynamic branch prediction with per-
ceptrons,” in International Symposium on High-Performance Com-
puter Architecture (HPCA), Jan. 2001.

[41] R. S. Amant, D. A. Jiménez, and D. Burger, “Low-power, high-
performance analog neural branch prediction,” in International
Symposium on Microarchitecture (MICRO), Nov. 2008.

[42] D. A. Jiménez, “An optimized scaled neural branch predictor,” in
International Conference on Computer Design (ICCD), Oct. 2011.

[43] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jiménez,
“Bit-level perceptron prediction for indirect branches,” in Inter-
national Symposium on Computer Architecture (ISCA), June 2019.

[44] A. Seznec, “Tage-sc-l branch predictors again,” in 5th JILP Work-
shop on Computer Architecture Competitions: Championship Branch
Prediction, held in conjunction with ISCA, 2016.

[45] S. J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, and H. Wang,
“Improving branch prediction by modeling global history with
convolutional neural networks,” in International Workshop on AI-
assisted Design for Architecture (AIDArc), held in conjunction with
ISCA, June 2019.

[46] A. G. Savva, T. Theocharides, and V. Soteriou, “Intelligent on/off
dynamic link management for on-chip networks,” in Journal of
Electrical and Computer Engineering - Special issue on Networks-
on-Chip: Architectures, Design Methodologies, and Case Studies, Jan
2012.

[47] D. DiTomaso, A. Sikder, A. Kodi, and A. Louri, “Machine learn-
ing enabled power-aware network-on-chip design,” in Design,
Automation and Test in Europe (DATE), Mar. 2017.

[48] S. V. Winkle, A. Kodi, R. Bunescu, and A. Louri, “Extending
the power-efficiency and performance of photonic interconnects
for heterogeneous multicores with machine learning,” in In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), Feb. 2018.

[49] M. F. Reza, T. T. Le, B. De, M. Bayoumi, and D. Zhao, “Neuro-
noc: Energy optimization in heterogeneous many-core noc using
neural networks in dark silicon era,” in International Symposium
on Circuits and Systems (ISCAS), May 2018.

[50] M. Clark, A. Kodi, R. Bunescu, and A. Louri, “Lead: Learning-
enabled energy-aware dynamic voltage/frequency scaling in
nocs,” in Design Automation Conference (DAC), June 2018.

[51] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri,
“Dynamic voltage and frequency scaling in nocs with supervised
and reinforcement learning techniques,” IEEE Transactions on
Computers, vol. 68, Mar. 2019.

[52] J. A. Boyan and M. L. Littman, “Packet routing in dynami-
cally changing networks: a reinforcement learning approach,”
Advances in Neural Information Processing Systems, vol. 6, pp. 671–
678, 1994.

[53] M. Majer, C. Bobda, A. Ahmadinia, and J. Teich, “Packet routing
in dynamically changing networks on chip,” in International
Parallel and Distributed Processing Symposium (IPDPS), Apr. 2005.

[54] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. zhang, “A reconfigurable
fault-tolerant deflection routing algorithm based on reinforce-
ment learning for network-on-chip,” in International Workshop on
Network on Chip Architectures (NoCArc), held in conjunction with
MICRO, Dec. 2010.

[55] M. Ebrahimi, M. Daneshtalab, and F. Farahnakian, “Haraq:
Congestion-aware learning model for highly adaptive routing

algorithm in on-chip networks,” in International Symposium on
Networks-on-Chip (NOCS), June 2012.

[56] B. K. Daya, L.-S. Peh, and A. P. Chandrakasan, “Quest for high-
performance bufferless nocs with single-cycle express paths and
self-learning throttling,” in Design Automation Conference (DAC),
June 2016.

[57] B. Wang, Z. Lu, and S. Chen, “Ann based admission control for
on-chip networks,” in Design Automation Conference (DAC), June
2019.

[58] V. Soteriou, T. Theocharides, and E. Kakoulli, “A holistic ap-
proach towards intelligent hotspot prevention in network-on-
chip-based multicores,” IEEE Transactions on Computers, vol. 65,
May 2015.

[59] J. Yin, Y. Eckert, S. Che, M. Oskin, and G. H. Loh, “Toward
more efficient noc arbitration: A deep reinforcement learning
approach,” in International Workshop on AI-assisted Design for
Architecture (AIDArc), held in conjunction with ISCA, June 2018.

[60] S. Das, J. R. Doppa, D. H. Kim, P. P. Pande, and K. Chakrabarty,
“Optimizing 3d noc design for energy efficiency: A machine
learning approach,” in International Conference on Computer-Aided
Design (ICCAD), Nov. 2015.

[61] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty, “Energy-
efficient and reliable 3d network-on-chip (noc): Architectures and
optimization algorithms,” in International Conference on Computer-
Aided Design (ICCAD), Nov. 2016.

[62] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu,
and R. Marculescu, “Learning-based application-agnostic 3d noc
design for heterogeneous manycore systems,” IEEE Transactions
on Computers, vol. 68, June 2019.

[63] T.-R. Lin, D. Penney, M. Pedram, and L. Chen, “Optimizing
routerless network-on-chip designs:an innovative learning-based
framework,” May 2019. arXiv:1905.04423.

[64] N. Rao, A. Ramachandran, and A. Shah, “Mlnoc: A machine
learning based approach to noc design,” in International Sym-
posium on Computer Architecture and High Performance Computing
(SBAC-PAD), Sept. 2018.

[65] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multiobjective optimization algorithm: Amosa,”
IEEE Transactions on Evolutionary Computation, vol. 12, May 2008.

[66] Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu,
and R. Marculescu, “Svr-noc: A performance analysis tool for
network-on-chips using learning-based support vector regression
model,” in Design, Automation and Test in Europe (DATE), Mar.
2013.

[67] K. Sangaiah, M. Hempstead, and B. Taskin, “Uncore rpd: Rapid
design space exploration of the uncore via regression modeling,”
in International Conference on Computer-Aided Design (ICCAD),
Nov. 2015.

[68] D. DiTomaso, T. Boraten, A. Kodi, and A. Louri, “Dynamic error
mitigation in nocs using intelligent prediction techniques,” in
International Symposium on Microarchitecture (MICRO), Oct. 2016.

[69] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “High-
performance, energy-efficient, fault-tolerant network-on-chip de-
sign using reinforcement learning,” in Design, Automation and Test
in Europe (DATE), Mar. 2019.

[70] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “Intellinoc: A
holistic design framework for energy-efficient and reliable on-
chip communication for manycores,” in International Symposium
on Computer Architecture (ISCA), June 2019.

[71] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their
bootstraps: Online learning in artificial neural networks for cmp
uncore power management,” in International Symposium on High-
Performance Computer Architecture (HPCA), Feb. 2014.

[72] G.-Y. Pan, J.-Y. Jou, and B.-C. Lai, “Scalable power management
using multilevel reinforcement learning for multiprocessors,” in
ACM Transactions on Design Automation of Electronic Systems, Aug.
2014.

[73] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and
B. R. de Supinski, “Adaptive configuration selection for power-
constrained heterogeneous systems,” in International Conference
on Parallel Processing (ICPP), Sept. 2014.

[74] D. Lo, T. Song, and G. E. Suh, “Prediction-guided performance-
energy trade-off for interactive applications,” in International
Symposium on Microarchitecture (MICRO), Dec. 2015.

[75] N. Mishra, J. D. Lafferty, and H. Hoffman, “Caloree: Learning
control for predictable latency and low energy,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar. 2018.

[76] Y. Bai, V. W. Lee, and E. Ipek, “Voltage regulator efficiency aware
power management,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), Apr. 2017.



14

[77] M. Allen and P. Fritzsche, “Reinforcement learning with adaptive
kanerva coding for xpilot game ai,” in IEEE Congress of Evolution-
ary Computation, June 2011.

[78] Z. Chen and D. Marculescu, “Distributed reinforcement learning
for power limited many-core system performance optimization,”
in Design, Automation and Test in Europe (DATE), Mar. 2015.

[79] Z. Chen, D. Stamoulis, and D. Marculescu, “Profit: Priority and
power/performance optimization for many-core systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, pp. 2064–2075, Oct. 2018.

[80] C. Imes, S. Hofmeyr, and H. Hoffman, “Energy-efficient applica-
tion resource scheduling using machine learning classifiers,” in
International Conference on Parallel Processing (ICPP), Aug. 2018.

[81] S. J. Tarsa, R. B. R. Chowdhury, J. Sebot, G. Chinya, J. Gaur,
K. Sankaranarayanan, C.-K. Lin, R. Chappell, R. Singhal, and
H. Wang, “Post-silicon cpu adaptation made practical using
machine learning,” in International Symposium on Computer Ar-
chitecture (ISCA), June 2019.

[82] S. J. Lu, R. Tessier, and W. Burleson, “Reinforcement learning for
thermal-aware many-core task allocation,” in Proceedings of the
25th edition on Great Lakes Symposium on VLSI, May 2015.

[83] D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Un-
sal, and A. Cristal, “A machine learning approach for perfor-
mance prediction and scheduling on heterogeneous cpus,” in
International Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD), Oct. 2017.

[84] H. Zhang, B. Tang, X. Geng, and H. Ma, “Learning driven
parallelization for large-scale video workload in hybrid cpu-gpu
cluster,” in International Conference on Parallel Processing (ICPP),
Aug. 2018.

[85] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated manage-
ment of multiple interacting resources in chip multiprocessors:
A machine learning approach,” in International Symposium on
Microarchitecture (MICRO), Nov. 2008.

[86] R. Jain, P. R. Panda, and S. Subramoney, “Machine learned
machines: Adaptive co-optimization of caches, cores, and on-chip
network,” in Design, Automation and Test in Europe (DATE), Mar.
2016.

[87] Y. Ding, N. Mishra, and H. Hoffmann, “Generative and multi-
phase learning for computer systems optimization,” in Interna-
tional Symposium on Computer Architecture (ISCA), June 2019.

[88] G. Wu, Y. Xu, D. Wu, M. Ragupathy, Y. yen Mo, and C. Chu,
“Flip-flop clustering by weighted k-means algorithm,” in Design
Automation Conference (DAC), June 2016.

[89] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-
Ghazaleh, and D. Ponomarev, “Hardware-based malware detec-
tion using low-level architectural features,” IEEE Transactions on
Computers, vol. 65, Mar. 2016.

[90] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in In-
ternational Symposium on Microarchitecture (MICRO), Dec. 2012.

[91] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and
H. Esmaeilzadeh, “Neural acceleration for gpu throughput pro-
cessors,” in International Symposium on Microarchitecture (MICRO),
Dec. 2015.

[92] B. Grigorian, N. Farahpour, and G. Reinman, “Brainiac: Bringing
reliable accuracy into neurally-implemented approximate com-
puting,” in International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2015.

[93] D. Mahajan, A. Yazdanbaksh, J. Park, B. Thwaites, and H. Es-
maeilzadeh, “Towards statistical guarantees in controlling qual-
ity tradeoffs for approximate acceleration,” in International Sym-
posium on Computer Architecture (ISCA), June 2016.

[94] G. F. Oliveira, L. R. Goncalves, M. Brandalero, A. C. S. Beck,
and L. Carro, “Employing classification-based algorithms for
general-purpose approximate computing,” in Design Automation
Conference (DAC), June 2018.

[95] F. N. Taher, J. Callenes-Sloan, and B. C. Schafer, “A machine
learning based hard fault recuperation model for approximate
hardware accelerators,” in Design Automation Conference (DAC),
June 2018.

[96] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and
U. Ogras, “In-network monitoring and control policy for dvfs
of cmp networks-on-chip and last level caches,” in International
Symposium on Networks-on-Chip (NOCS), May 2012.

[97] R. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Conference on Neural
Information Processing Systems (NeurIPS), June 1996.

[98] J. A. Boyan and A. W. Moore, “Learning evaluation functions
to improve optimization by local search,” The Journal of Machine
Learning Research, Sep. 2001.

[99] P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s
quasirandom sequence generator,” ACM Transactions on Mathe-
matical Software, vol. 14, Mar. 1988.

[100] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribu-
tion analysis to find periodic behavior and simulation points in
applications,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), Sept. 2001.

[101] W. Wang, J. W. Davidson, and M. L. Soffa, “Predicting the mem-
ory bandwidth and optimal core allocations for multi-threaded
applications on large-scale numa machines,” in International Sym-
posium on High-Performance Computer Architecture (HPCA), Mar.
2016.

[102] R. M. Kretchmar, “Reinforcement learning algorithms for ho-
mogenous multi-agent systems,” in Workshop on Agent and Swarm
Programming, 2003.

[103] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum,
“Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation,” in Conference on Neural
Information Processing Systems (NeurIPS), Dec. 2016.

[104] H. Mao, Z. Gong, Z. Zhang, Z. Xiao, and Y. Ni, “Learning multi-
agent communication under limited-bandwidth restriction for
internet packet routing,” Feb. 2019. arXiv:1903.05561.

[105] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Aug. 2017.
arXiv:1703.09039.

[106] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,” Oct. 2015.
arXiv:1506.02626.

[107] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu,
and A. Liotta, “Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network science,”
Nature Communications, vol. 9, June 2018.

[108] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” Mar. 2016.
arXiv:1602.02830.

[109] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn:
Neural network with no multiplication,” in Design, Automation
and Test in Europe (DATE), Mar. 2017.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[111] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“Approx-noc: A data approximation framework for network-
on-chip architectures,” in International Symposium on Computer
Architecture (ISCA), June 2017.

[112] A. Raha and V. Raghunathan, “Towards full-system energy-
accuracy tradeoffs: A case study of an approximate smart camera
system,” in Design Automation Conference (DAC), June 2017.

[113] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and
M. Oskin, “Accept: A programmer-guided compiler framework
for practical approximate computing,” University of Washington
Technical Report, vol. 1, Jan. 2015.

[114] B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gelbart, P. Waht-
moug, G.-Y. Wei, and D. Brooks, “A case for efficient accelerator
design space exploration via bayesian optimization,” in Interna-
tional Symposium on Low Power Electronics and Design (ISLPED),
July 2017.

[115] A. Vallero, A. Savino, G. Politano, S. D. Carlo, A. Chatzidimitriou,
S. Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal,
A. Gonzalez, M. Kooli, A. Bosio, and G. D. Natale, “Cross-layer
system reliability assessment framework for hardware faults,” in
International Test Conference (ITC), Nov. 2016.


	1 Introduction
	2 Background
	2.1 Fundamental Applicability
	2.2 Learning Approaches & Models
	2.3 Feature Selection

	3 Literature Review
	3.1 System Simulation
	3.2 GPUs
	3.3 Memory Systems and Branch Prediction
	3.4 Networks-on-Chip
	3.5 System-level Optimization
	3.6 ML-Enabled Approximate Computing

	4 Analysis of Current Practice
	4.1 Online ML Application
	4.2 Offline ML Applications
	4.3 Domain Knowledge & Model Interpretation

	5 Future Work
	5.1 Investigating Models & Algorithms
	5.2 Enhancing Implementation Strategies
	5.3 Developing Generalized Tools
	5.4 Embracing Novel Applications

	6 Conclusion
	References

